TECHNOLOGY PRESENTATION

New material, method and apparatus for optical three-dimensional radiation dosimetry

TECHNOLOGY SUMMARY
The material and method enables providing a phantom (i.e., a model of a part of the human body), which can be subjected to radiation and subsequently be read out, revealing the three-dimensional dose distribution; the phantom can be used even in a strong magnetic field where electronic devices are not applicable.

APPLICATIONS
The technology is useful to validate advanced radiotherapy where a real 3D dosimetry method enabling verification of complex, and it is particularly valuable in particle therapy, where the range of the particle track is critical and the existing quality-assurance procedures are inapplicable.

CURRENT STATE
A prototype has been fabricated and used for initial experiments. Dosimeters in shapes for standard dosimetry read-out have also been created and used for validating a good dosimetric response.

INTELLECTUAL PROPERTY RIGHTS
All IP rights concerning the technology belong to Aarhus University and the Central Denmark Region; a patent is pending on the technology.

COMMERCIAL PERSPECTIVES
The technology has a wide range of benefits compared to other dosimeters. Some of these are described below:

- Reusable method – The material can be reset. This means that it is possible to reuse the dosimeters for new dose distributions.
- Archive function – It is possible to archive the dose distribution in the material for up to a month. This makes it possible to ship the dosimeter over considerable distances to an expert for further analysis.
- Solid material – The dosimeters are made of solid material. This means that shipping and handling the dosimeter without any supporting material is possible.
- Operational conditions – The material is not sensitive to any external conditions like temperature, humidity or magnetic field, and enable dose measurements in broad medical range.
- Flexibility – The dosimeter has potential to simulate 3D anthropomorphic shapes (e.g. specific organs) and their deformations during an irradiation procedure.
- Simple and inexpensive – The production method is based on mixing of readily and commercially available components.

BUSINESS OPPORTUNITY
Aarhus University is looking for a partner to help move the invention forward towards a commercial product that fits market requirements.

It is the immediate goal of Aarhus University to initiate a research collaboration with an external partner containing a licensing agreement.
New material, method and apparatus for optical three-dimensional radiation dosimetry

INVENTORS

Peter Balling
Professor MSO
Department of Physics and Astronomy

Michal Sadel
Post.doc
Department of Physics and Astronomy

Ellen Marie Høye
Ph.d. student
Department of Oncology

Ludvig Paul Muren
Professor
Department of Clinical Medicine

Peter Skyt
Medical Physicist
Department of Medical Physics

Jørgen B.B. Petersen
Medical Physicist
Department of Medical Physics

Contact
Søren S. Bødker
P: +45 6020 2692
Aarhus University
E: ssb@au.dk